Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5155, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620303

RESUMO

Metasurfaces have promising potential to revolutionize a variety of photonic and electronic device technologies. However, metasurfaces that can simultaneously and independently control all electromagnetics (EM) waves' properties, including amplitude, phase, frequency, polarization, and momentum, with high integrability and programmability, are challenging and have not been successfully attempted. Here, we propose and demonstrate a microwave universal metasurface antenna (UMA) capable of dynamically, simultaneously, independently, and precisely manipulating all the constitutive properties of EM waves in a software-defined manner. Our UMA further facilitates the spatial- and time-varying wave properties, leading to more complicated waveform generation, beamforming, and direct information manipulations. In particular, the UMA can directly generate the modulated waveforms carrying digital information that can fundamentally simplify the architecture of information transmitter systems. The proposed UMA with unparalleled EM wave and information manipulation capabilities will spark a surge of applications from next-generation wireless systems, cognitive sensing, and imaging to quantum optics and quantum information science.

2.
Opt Lett ; 48(12): 3223-3226, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319067

RESUMO

We report a thin-film circular polarizer consisting of three metal-grid layers to be used with a photoconductive antenna (PCA) to generate terahertz (THz) circularly polarized (CP) radiation. The polarizer has a high transmission with a measured 3 dB axial-ratio bandwidth of 54.7% from 0.57 to 1 THz. We further developed a generalized scattering matrix approach to provide insight into the underlying physical mechanism of the polarizer. We revealed that the Fabry-Pérot-like multi-reflection among gratings enables the high-efficiency polarization conversion. The successful realization of the CP PCA can find widespread application, such as THz circular dichroism spectroscopy, THz Mueller imaging, and ultrahigh-speed THz wireless communications.

3.
Sci Adv ; 9(4): eadf8478, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706183

RESUMO

The sixth-generation (6G) communication technology is being developed in full swing and is expected to be faster and better than the fifth generation. The precise information transfer directivity and the concentration of signal strength are the key topics of 6G technology. We report the synthetic phase design of rotary doublet Airy beam and triplet Gaussian beam varifocal meta-devices to fully control the terahertz beam's propagation direction and coverage area. The focusing spot can be delivered to arbitrary positions in a two-dimensional plane or a three-dimensional space. The highly concentrated signal can be delivered to a specific position, and the transmission direction can be adjusted freely to enable secure, flexible, and high-directivity 6G communication systems. This technology avoids the high costs associated with extensive use of active components. 6G communication systems, wireless power transfer, zoom imaging, and remote sensing will benefit from large-scale adoption of such a technology.

4.
Opt Express ; 30(12): 21918-21930, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224902

RESUMO

A Fourier lens can perform the Fourier transform of an incident wavefront at the focal plane. This paper reports a metasurface-based Fourier lens fed by compact plasmonic optical antennas for wide-angle beam steering. The metasurface, composed of six elements with different configurations covering the 2π phase range, features a large field-of-view (FOV) of ±50°. A novel plasmonic optical antenna for broadside radiation is then designed as the feed source of the metasurface. The proposed antenna has ultra-compact size of 0.77λ × 1.4λ, and achieves a high directivity of 9.6 dB and radiation efficiency of over 80% at the wavelength of 1550 nm. Full-wave simulations are carried out to evaluate the performances of the designed metasurface-assisted beam steering device. The results show that this device can achieve a maximum directivity of 21.5 dB at broadside radiation. Compared to conventional Yagi-Uda antenna feed, a directivity enhancement of about 2.7 dB can be obtained, exhibiting a great superiority of the proposed feed antenna. In addition, a large beam steering range of ±50° can be achieved with an acceptable gain drop of 2.83 dB. With the advantages of wide beam steering range, good radiation characteristics, small footprint, and ease of integration, the proposed metasurface-assisted beam steering device would be a promising candidate for integrated photonic applications, including wireless optical communications, light detection and ranging, and augmented reality.

5.
ACS Appl Mater Interfaces ; 13(35): 41968-41977, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427444

RESUMO

Existing strategies for reconfigurable three-dimensional (3D) electronics are greatly constrained by either the complicated driven mechanisms or harsh demands for conductive materials. Developing a simple and robust strategy for 3D electronics reconstruction and function extension remains a challenge. Here, we propose a solvent-driven bistable actuator, which acts as a substrate to reconstruct the combined 3D electronic device. Extraction of silicon oil from a hybrid poly(dimethylsiloxane) (PDMS) circle sheet buckles the dish to a bistable structure. The ultraviolet (UV)/ozone treatment on one surface of the PDMS structure introduces an oxidized layer, yielding a bilayered, solvent-driven bistable smart actuator. The snap-back stimulus to the oxidized layer differs from the snap-through stimulus. Experimental and numerical studies reveal the fundamental regulations for buckling configurations and the bistable behavior of the actuator. The prepared bistable actuator drives the bonded kirigami polyimide (PI) sheets to diverse 3D structures from the original bending configuration, reversibly. A frequency-reconfigurable electrically small monopole antenna is presented as a demonstration, which paves a way for the applications of this actuator in the field of reconfigurable 3D electronics.

6.
Opt Express ; 29(10): 14853-14867, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985198

RESUMO

Mueller matrix polarimetry (MMP) has been demonstrated and recognized as an effective approach to attaining imaging enhancement as well as revealing polarization properties of an imaged sample. Generally, a minimum of 16 combinations of intensity-only measurements involving both linear and circular polarizations are required to completely and accurately determine the 4 × 4 Mueller matrix (MM) and comprehensively describe the polarization properties of the sample. However, broadband circular polarizations (CP) are rather difficult to obtain for design and fabrication limitations in the terahertz region, which poses a challenge to the acquisition of the 4 × 4 MM. In this circumstance, the 3 × 3 MM degradation using only linear polarizations (LP) is preferred and sufficient for characterization of non-depolarizing samples. In this paper, a multi-spectral 3 × 3 MMP system based on the THz time-domain spectroscopy (THz-TDS) is established from 0.1 to 1 THz. The system demonstrated is capable of fulfilling the accurate determination of the 3 × 3 MM. The Mueller matrix polar decomposition (MMPD), modified to be compatible with the MM degradation, is employed to explore the fine details and properties of the sample. By signal post-processing techniques, the MM elements in the time domain are retrieved, and the time dimension reflecting the depth information facilitates the 3D reconstruction of the sample. This work provides a prototype for 3D imaging of biological samples at higher frequencies in the future.

7.
Opt Lett ; 45(10): 2906-2909, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412498

RESUMO

Holography has garnered an explosion of interest in tremendous applications, owing to its capability of storing amplitude and phase of light and reconstructing the full-wave information of targets. Spatial light modulators, metalenses, metasurfaces, and other devices have been explored to achieve holographic images. However, the required phase distributions for conventional holograms are generally calculated using the Gerchberg-Saxton algorithm, and the iteration is time-consuming without Fourier transform or other acceleration techniques. Few studies on designing holograms using artificial intelligence methods have been conducted. In this Letter, a three-dimensional (3D)-printed hologram for terahertz (THz) imaging based on a diffractive neural network (DNN) is proposed. Target imaging letters "THZ" with uniform field amplitude are assigned to a predefined imaging surface. Quantified phase profiles are primarily obtained by training the DNN with the target image and input field pattern. The entire training process takes only 60 s. Consequently, the hologram, that is, a two-dimensional array of dielectric posts with variational heights that store phase information, is fabricated using a 3D printer. The full-wave simulation and experimental results demonstrate the capability of the proposed hologram to achieve high-quality imaging in the THz regime. The proposed lens and design strategy may open new possibilities in display, optical-data storage, and optical encryption.

8.
Opt Lett ; 44(23): 5735-5738, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774766

RESUMO

An approach to producing the orbital angular momentum (OAM) based on spoof localized surface plasmons (spoof LSPs) in microwave frequencies is demonstrated both theoretically and experimentally. The fundamental and high-order modes of spoof LSPs occur when a textured metallic surface is excited with a microstrip line. Two orthogonal modes of spoof LSPs with +90° or -90° phase retardation are superimposed, resulting in a OAM-vortex mode. In the proposed design, two separate feeding ports are employed to excite the orthogonal resonant modes simultaneously, and a hybrid coupler is used to provide the required ±90° phase retardation. By loading a circularly arranged dipole array on the spoof LSPs, the confined surface waves of the spoof LSPs can be converted into radiated vortex waves. To verify this idea, an OAM-mode emitter with indices of ±3 is fabricated and measured. Experimental near-field distributions and far-field radiation patterns show excellent agreement with the simulated results.

9.
Sci Rep ; 7(1): 9959, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855700

RESUMO

Optical phased arrays have been demonstrated to enable a variety of applications ranging from high-speed on-chip communications to vertical surface emitting lasers. Despite the prosperities of the researches on optical phased arrays, presently, the reported designs of optical phased arrays are based on silicon photonics while plasmonic-based optical phased arrays have not been demonstrated yet. In this paper, a passive plasmonic optical phased array is proposed and experimentally demonstrated. The beam of the proposed plasmonic optical phased array is steerable in the far-field area and a high directivity can be achieved. In addition, radio frequency phased array theory is demonstrated to be applicable to the description of the coupling conditions of the delocalized surface plasmons in optical phased arrays and thus the gap between the phased arrays at two distinctly different wavelengths can be bridged. The potential applications of the proposed plasmonic phased arrays include on-chip optical wireless nanolinks, optical interconnections and integrated plasmonic lasers.

10.
Sci Rep ; 7(1): 3478, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615684

RESUMO

The ability to manipulate the propagation properties of electromagnetic waves, e.g., divergence, focusing, holography or deflection, is very significant in terahertz applications. Metasurfaces with flat structures are attractive for achieving such manipulations in terahertz band, as they feature low profile, lightweight, and ease of design and installation. Several types of terahertz reflective or transmitting metasurfaces with focusing function have been implemented recently, but none of them can provide scanning ability with controllable focus. Here, a flat reflective metasurface featuring controllable focal shift is proposed and experimentally demonstrated. Furthermore, the principle of designing a focus scanning reflective metasurface is presented and the focusing characteristics are discussed, including focus scanning along a line parallel or orthogonal to the metasurface with a large bandwidth. These interesting properties indicate that this flat reflective metasurface could play a key role in many terahertz imaging and detection systems.

11.
Sci Rep ; 5: 9367, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25797336

RESUMO

Terahertz (THz) metasurfaces have been explored recently due to their properties such as low material loss and ease of fabrication compared to three-dimensional (3D) metamaterials. Although the dispersion properties of the reflection/transmission-type THz metasurface were observed in some published literature, the method to control them at will has been scarcely reported to the best of our knowledge. In this context, flexible dispersion control of the THz metasurface will lead to great opportunities toward unprecedented THz devices. As an example, a THz metasurface with controllable dispersion characteristics has been successfully demonstrated in this article, and the incident waves at different frequencies from a source in front of the metasurface can be projected into different desired anomalous angular positions. Furthermore, this work provides a potential approach to other kinds of novel THz devices that need controllable metasurface dispersion properties.

12.
Sci Rep ; 3: 1614, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563489

RESUMO

Metamaterials are effectively homogeneous materials that display extraordinary dispersion. Negative index metamaterials, zero index metamaterials and extremely anisotropic metamaterials are just a few examples. Instead of using locally resonating elements that may cause undesirable absorption, there are huge efforts to seek alternative routes to obtain these unusual properties. Here, we demonstrate an alternative approach for constructing metamaterials with extreme dispersion by simply coiling up space with curled channels. Such a geometric approach also has an advantage that the ratio between the wavelength and the lattice constant in achieving a negative or zero index can be changed in principle. It allows us to construct for the first time an acoustic metamaterial with conical dispersion, leading to a clear demonstration of negative refraction from an acoustic metamaterial with airborne sound. We also design and realize a double-negative metamaterial for microwaves under the same principle.


Assuntos
Manufaturas/análise , Modelos Químicos , Refratometria/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
13.
J Opt Soc Am A Opt Image Sci Vis ; 27(2): 308-18, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20126243

RESUMO

In this paper, we present the multilevel Green's function interpolation method (MLGFIM) for analyses of three-dimensional doubly periodic structures consisting of dielectric media and conducting objects. The volume integral equation (VIE) and surface integral equation (SIE) are adopted, respectively, for the inhomogeneous dielectric and conducting objects in a unit cell. Conformal basis functions defined on curvilinear hexahedron and quadrilateral elements are used to solve the volume/surface integral equation (VSIE). Periodic boundary conditions are introduced at the boundaries of the unit cell. Computation of the space-domain Green's function is accelerated by means of Ewald's transformation. A periodic octary-cube-tree scheme is developed to allow adaptation of the MLGFIM for analyses of doubly periodic structures. The proposed algorithm is first validated by comparison with published data in the open literature. More complex periodic structures, such as dielectric coated conducting shells, folded dielectric structures, photonic bandgap structures, and split ring resonators (SRRs), are then simulated to illustrate that the MLGFIM has a computational complexity of O(N) when applied to periodic structures.

14.
J Opt Soc Am A Opt Image Sci Vis ; 25(10): 2535-48, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18830332

RESUMO

A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...